Welcome

🎁💰恭喜发财💰🎁

国产人妻精品无码

FAQ
You are here:Home >> News >> FAQ
The test method of cyclic aging of lithium ion battery is introduced
541 2023-12-09
The test method of cyclic aging of lithium ion battery is introduced
First, capacity test method
1. Constant current charge and discharge test:
This is the most basic test method. Under the specified temperature environment (such as normal temperature 25℃), the lithium-ion battery is charged with a constant current until the set charging cutoff voltage is reached, such as for common ternary lithium-ion batteries, the charging cutoff voltage is generally about 4.2V. Then discharge at a constant current until the discharge cutoff voltage is reached, which is usually about 3.0V for ternary lithium-ion batteries. By recording the charging capacity and discharge capacity of each cycle, the attenuation of the battery capacity with the number of cycles can be observed.
For example, when testing a lithium-ion battery for a mobile phone, the charging current is set to 0.5C (C is the nominal capacity of the battery, such as the nominal capacity of the battery is 3000mAh, 0.5C is 1500mA), and the discharge current is also 0.5C, after 100 cycles, It was found that its discharge capacity dropped from the initial 3000mAh to 2700mAh, which intuitively reflects the attenuation of battery capacity.
2. Capacity test under different magnification:
In addition to testing at a single magnification, it is also tested at several different charge and discharge magnifications. For example, charge and discharge cycles are carried out at different magnifications such as 0.2C, 0.5C, 1C and 2C. The capacity performance of the battery is different at different magnification, and the polarization phenomenon of the battery is more serious at high magnification, and the capacity attenuation may be faster.
Taking lithium-ion power batteries for electric vehicles as an example, when cycling at 0.2C rate, the battery may be able to maintain a high capacity utilization rate, but when cycling at 2C rate, due to factors such as polarization and heating inside the battery, its capacity decay speed will be significantly accelerated. By comparing the capacity decay curve at different rates, Battery performance and aging can be evaluated more comprehensively.
Second, internal resistance test method
1. Ac Impedance Test (EIS) :
This method is to apply a small amplitude of AC voltage signal to the battery (general frequency range from a few mHz to a few hundred kHz), and then measure the AC current response of the battery, so as to obtain the impedance spectrum of the battery. In the process of battery cycle aging, its internal resistance will change, and the change of internal resistance at different frequencies can be obtained by EIS.
For example, the new lithium-ion battery is mainly reflected in the ohmic internal resistance of the electrolyte in the high frequency region, and the charge transfer internal resistance and diffusion internal resistance of the electrode reaction in the low frequency region. With the increase of the number of cycles, the internal resistance of the low frequency region may increase due to the change of the electrode surface active substance and the blockage of the lithium ion diffusion channel. Through the analysis of EIS spectrum, we can deeply understand the electrochemical reaction process and aging mechanism inside the battery.
2. Dc internal resistance test:
The method is to apply a short DC pulse current at both ends of the battery (for example, the current pulse duration is 10-30 seconds), and then measure the voltage change at both ends of the battery, and calculate the internal resistance of the battery according to Ohm‘s law. The variation of DC internal resistance with the number of cycles can be observed by testing the internal resistance at different cycle stages.
For example, when testing lithium-ion batteries for power tools, a DC internal resistance test is performed every 10 cycles. At the beginning, the DC internal resistance of the battery may be only tens of milliohm, and with the increase of the number of cycles, the internal resistance may rise to several hundred milliohm, which indicates that the performance of the battery is gradually declining.
Third, cycle life test method
1. Standard cycle life test:
Cyclic testing is carried out according to the charge and discharge system specified by the relevant standards (such as the International Electrotechnical Commission IEC standard or the national standard GB/T, etc.). It generally includes cycling the battery at a specific temperature (such as 25 ° C or 45 ° C at a high temperature) at a certain rate of charge and discharge (such as 0.5C charging and 0.5C discharging) until the battery capacity decays to a certain percentage of the initial capacity (such as 80%), and the number of cycles is recorded as the cycle life of the battery.
Taking lithium-ion batteries for energy storage as an example, according to the GB/T standard test, in a normal temperature environment, after hundreds of cycles, if the battery capacity decays to 80% of the initial capacity, which indicates that the cycle life of the battery under the conditions of use has reached a certain limit, this method can directly assess the service life of the battery under standard conditions of use.
2. Accelerated cycle life test:
In order to shorten the test time, an accelerated aging method is used. For example, the aging process of the battery is accelerated by increasing the charging and discharging ratio and increasing the test temperature. However, this method requires the establishment of a suitable acceleration model to estimate the cycle life under actual use conditions.
For example, in the study of new lithium-ion battery materials, in order to quickly evaluate its performance, the test temperature is increased to 60 ° C, the charge and discharge ratio is increased to 2C, so that the rapid attenuation of battery capacity and other performance changes can be observed in a short time, and then the cycle life under normal temperature and normal ratio is calculated according to the accelerated aging model.
fourth. Voltage characteristic test method
1. Charge and discharge curve test:
During the battery cycle, record the voltage-time or voltage-capacity curve during charging and discharging. The charge and discharge curve of the new battery is generally smooth, and the curve will change with the increase of the number of cycles. For example, the charging curve may show a decrease in platform voltage and an increase in voltage at the end of charging. The voltage drop may be accelerated on the discharge curve.
For lithium-ion batteries for laptop computers, in the initial state, the voltage drop in the discharge curve from full charge to no power is relatively stable, after several cycles, the voltage may decrease significantly in the initial discharge, which reflects the change in the performance of the electrode material inside the battery and the degree of aging.
2. Open circuit voltage test:
After the battery has been standing for a certain period of time (generally a few hours to more than ten hours to ensure that the internal electrochemical balance of the battery is reached), its open-circuit voltage is measured. During battery aging, the open-circuit voltage changes because the chemical balance inside the battery changes.
For example, when monitoring the lithium-ion battery pack, periodically (such as once a week) measure the open circuit voltage of each battery in the battery pack, with the aging of the battery, the open circuit voltage of some batteries may be significantly different from other batteries, which can help judge the consistency and aging of the battery, and find the battery that may have problems in time.
日韩精品无码免费视频在线_午夜人妻福利影院_成人高清视频综合网_国产福利人妻精品一区_亚洲ꦜ午夜免费视频不卡在线_欧美人妻无码高清视频_午夜福利精品视频二区_中文字幕人妻在线网_日韩午夜福利综合视频_在线成人精品影院网_日韩人妻免费视频高清网 日本高清免费xxx_少妇| 国产精品人妻一区二区三区A| 日本午夜精品一区二区三区电影| 人妻少妇精品视频一区二区三区| 亚洲精品中文字幕无码专区| 亚洲丁香婷婷久久一区二区| 亚洲AV永久无码精品网址| 国产真实乱人偷精品人妻| 无码人妻久久一区二区三区蜜桃| 午夜精品一区二区免费人妻人人干视频| 国产精品aⅴ久久久久久鸭绿欲| 亚洲国产精品日韩在线观看| 中文字幕乱偷无码动漫av_| AV无码AV天天AV天天爽| 少妇厨房愉情理伦片bd在线观看| 国产在线精品一区在线观看| 国产精品无码国模私拍视频| 水蜜桃国产在线观看免费视频| 99久久无码免费国产| 国产精品99无码一区二蜜桃| 丁香婷婷综合激情五月色| 色欲AV无码国产麻豆美| 亚洲人成网站999久久久综合| 日韩乱码人妻无码中文视频| 免费久久人人爽人人爽人人全集在线| AV无码AV天天AV天天爽| 午夜亚洲福利视频| 精品午夜福利1000在线观看| 久久精品国产亚洲AV无码麻豆| 亚洲精品乱码久久久久久日本| 有码无码中文字幕自慰系列| 日韩高清大片永久免费入口| 中文字幕色偷偷人妻久久| 五月婷婷综合国产成人一区二区三区| 国产成人高清视频免费播放| 性欧美丰满熟妇XXXX性久久久| 欧美丰满熟妇xxxx性ppx人交| 亚洲欧美精品水蜜桃| 白嫩外女BBWBBWBBW| 少妇人妻精品毛片一区二区| 一本色道无码道DVD在线观看| 中文字幕人妻无码系列第三区| 亚洲欧洲∨国产一区二区三区| 97国产超薄黑色肉色丝袜,精品国产96亚洲一区二区三区| 国产农村熟妇出轨videos| 亚洲乱码国产乱码精品视频| 中文字幕乱妇无码av在线| 国产亚洲日韩一区二区三区| 国产午夜精品一区二区三区| 午夜福利精品短视频在线| 国产一级久久久久毛片精品| 女教师免费观看全集电视剧| 久久精品国自产拍,婷婷无套内射影院| 永久免费不卡在线观看黄网站| 国产在线乱子伦一区二区| 久中文字幕中文字幕亚洲无线| 亚洲精品乱码久久久久久日本| 亚洲Vv无码专区日韩乱码不卡| 亚洲一级毛片日韩高清| 欧美日韩高清视频在线观看| 强伦人妻一区二区三区视频| 国产欧美精品一区二区色综合| 337P日本欧洲亚洲大胆精品| 服从调教的人妻在线观看| 亚洲成a人片在线观看无码专区| 人妻少妇久久久久久97人妻| 亚洲国产精品中文乱码AV| 91精品丝袜国产高跟在线一区| 亚洲A∨无码精品午夜电影| 朋友夫妇交换2未删减版| 国产成人一区二区三区影院| 人妻被修空调在夫面侵犯| 国产suv精品一区| 亚洲av无码精品色午夜在线观看| 日韩中文字幕在线观看| 中文字幕在线日韩| 亚洲番号无码剧情番号| 亚州AV无码在线观看| 人妻丰满熟妇av无码专区| 九一无码中文字幕久久无码色| 国产人妻丰满熟妇在线视频| JΑPΑNESEHD熟女熟妇伦| 免费伦理片在线观看| 狠狠躁夜夜躁人人爽天天古典| 蜜臀av夜夜澡人人爽人人| 日本老司机午夜福利在线免费观看| 丰满人妻在公车被猛烈进入电影| 中文字幕久久人妻无码人妻| 精品人妻系列无码一区二区三区| 午夜精品影视国产一区在线麻豆| 久久无码人妻精品一区二区三区| 亚州AV综合色区无码一区| 日产无码久久久久久精品| 欧美精品久久99人妻无码| 国产尤物av尤物在线观看| 日本熟妇无码亚洲成a人片动漫| 强伦女教师2HD在线观看| 永久中文字募精品人妻丰满熟妇免费视频| 国内精品久久久久伊人av| 国产六月婷婷爱在线观看| 国产激情久久久久久熟女| 国内少妇高潮嗷嗷叫在线播放| 乱中年女人伦AV一区二区| 久久天天躁狠狠躁夜夜躁综合| 99久久人妻无码精品系列蜜桃| 91精品国产综合久久久久久久| 国产人妻人伦精品| 国产福利一区二区精品视频| 国产人妻精品区一区二区三区| 国产精品成年片在线观看| 爽爽精品DVD蜜桃成熟时电影院| 亚洲äV无码精品久久久久成精品| 亚洲日韩免费视频观看| 偷国产乱人伦偷精品视频| 丰满的继牳2理伦片| 丰满的继牳2理伦片| 中文字募永久精品免费视频人妻丰满熟妇| 婷婷五月综合人人网| 欧美日韩精品午夜久久国产| 午夜婷婷国产麻豆精品| 亚洲东京热一区二区日韩| 91精选日韩综合永久入口| 亚洲AV男人的天堂在线观看| 精品人妻中文字幕有码在线| 国产成a人亚洲精v品无码性色| 亚洲中文字幕在线观看| 产成人精品午夜视频免费| 亚洲大片精品永久免费看网站| 午夜人性色福利无码视频在线观看| 欧美熟妇一区二区三区蜜97夜夜澡人人爽| 无码人妻一区二区三区四区ava| 麻豆国产精品永久免费视频| 精品欧美熟妇视频在线观看| 人妻无码专区一区二区三区| 91国内精品野花午夜精品| 久久精品国产一区二区三区四区| 无套内谢少妇毛片A片樱花| 午夜精品久久久久久视频入口| 人妻无码专区在线视频观看| 午夜精品影视国产一区在线麻豆| 精品人妻中文字幕有码在线| 人妻公妇の浮中字视频| www国产亚洲精品久久久日本| 国产熟女精品视频大全| 国产人妻换人妻互换A片爽文视频| 日韩成人人妻熟妇乱子伦hd| 国产精品无码mv在线观看| 欧美在线观看成人高清视频| 天天爽夜夜爽人人爽| 无码人妻久久一区二区三区蜜桃| 色熟妇人妻久久中文字幕| 97国产精东麻豆人妻电影观看| 日本肉感爆乳一区二区本草久| 国产小视频无码人妻HD| 亚洲AV色欲无码人妻中文字幕| 欧美极品少妇无套实战| 日韩内射美女片在线观看网| 国产人妻精品无码视频在线| 日韩高清视频人妻综合网| 国产福利精品人妻在线视频| 人妻精品在线视频福利网| 日韩精品人妻福利在线视频| 日韩精品无码人妻综合在线视频| 日韩人妻无码免费在线视频| 日韩丰满人妻无码区| 国产人妻精品无码| 日韩午夜免费视频| 欧美成人福利网| 国产午夜福利人妻| 亚洲无码免费视频| 午夜福利人妻影院| 成人精品视频在线观看| 日韩高清午夜无码| 亚洲成人福利区| 国产亚洲精品视频网| 日韩丰满人妻无码区| 日韩人妻精品一区| 美乳丰满人妻无码视频| 国产人妻精品无码| 日韩午夜免费视频| 欧美成人福利网| 国产午夜福利人妻| 亚洲无码免费视频| 午夜福利人妻影院| 成人精品视频在线观看| 日韩高清午夜无码| 亚洲成人福利区| 国产亚洲精品视频网| 日韩丰满人妻无码区| 日韩人妻精品一区| 美乳丰满人妻无码视频| 国产人妻精品无码| 日韩午夜免费视频| 欧美成人福利网| 国产午夜福利人妻| 亚洲无码免费视频| 午夜福利人妻影院| 日韩丰满人妻无码区| 成人精品视频在线观看| 日韩高清午夜无码| 亚洲成人福利区| 国产亚洲精品视频网| 日韩人妻精品一区| 美乳丰满人妻无码视频| 国产人妻精品无码| 日韩午夜免费视频| 欧美成人福利网| 国产午夜福利人妻| 亚洲无码免费视频| 午夜福利人妻影院| 成人精品视频在线观看| 日韩高清午夜无码| 日韩丰满人妻无码区| 日韩人妻精品一区| 美乳丰满人妻无码视频|